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Motivation

The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local
features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and
textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or
GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore
the time‐wise diffusion models. We initially investigate the key contributions of the U‐Net parameters to the denoising process
and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially
improving the generation quality on the fly (see Fig. 1). Capitalizing on this discovery, we propose a simple yet effective
method—termed “MaskUNet”— that enhances generation quality with negligible parameter numbers (see Fig. 2).
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Figure 1. The motivation for MaskUnet.
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Figure 2. The pipeline of the MaskUnet.

Highlights

We conduct an in‐depth study of the relationship between parameters in the pre‐trained U‐Net, samples, and timesteps,
revealing the effectiveness of parameter independence, which provides a new perspective for efficient utilization of
U‐Net parameters.
We propose a novel fine‐tuning framework for text‐to‐image pre‐trained diffusion models, called MaskUNet. In this
framework, the training‐based method optimizes masks through diffusion loss, while the training‐free method uses a
reward model to optimize masks. The learnable masks enhance U‐Net’s capabilities while preserving model
generalization.
We evaluate MaskUNet on the COCO dataset and various downstream tasks. Experimental results demonstrate
significant improvements in sample quality and substantial performance gains in key metrics.
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Figure 3. Quality results compared to other methods.

Table 1. Quantitative results of zero‐shot generation on the COCO 2014 and COCO 2017 datasets, with the best results in bold.

Method
COCO 2014 COCO 2017

FID‐30k (↓) CLIP (↑) FID‐5k (↓) CLIP (↑)
SD 1.5 12.85 0.32 23.39 0.33

Full Fine‐tune 14.06 0.32 24.45 0.33
LoRA 12.82 0.32 23.18 0.33

MaskUnet 11.72 0.32 21.88 0.33
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Figure 4. Quality results by Text2Video‐Zero with or without mask.
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Figure 5. Quality results compared to other methods.
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Figure 6. Quality results by ReVersion w or w/o mask.
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